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Abstract The interior oceans of several icy moons are considered as affected by rotation. Observations
suggest a larger heat transport around the poles than at the equator. Rotating Rayleigh‐Bénard convection
(RRBC) in planar configuration can show an enhanced heat transport compared to the non‐rotating case within
this “rotation‐affected” regime. We investigate the potential for such a (polar) heat transport enhancement in
these subglacial oceans by direct numerical simulations of RRBC in spherical geometry for Ra = 106 and
0.7 ≤ Pr ≤ 4.38. We find an enhancement up to 28% in the “polar tangent cylinder,” which is globally
compensated by a reduced heat transport at low latitudes. As a result, the polar heat transport can exceed the
equatorial by up to 50%. The enhancement is mostly insensitive to different radial gravity profiles, but decreases
for thinner shells. In general, polar heat transport and its enhancement in spherical RRBC follow the same
principles as in planar RRBC.

Plain Language Summary The icy moons of Jupiter and Saturn like for example, Europa, Titan, or
Enceladus are believed to have a water ocean beneath their ice crust. Several of them show phenomena in their
polar regions like active geysers or a thinner crust than at the equator, all of which might be related to a larger
heat transport around the poles from the underlying ocean. We simulate the flow dynamics and currents in these
subglacial ocean by high‐fidelity simulations, though still at less extreme parameters than in reality, to study the
heat transport and provide a possible explanation of such a “polar heat transport enhancement.” We find that the
heat transport around the poles can be up to 50% larger than around the equator, and that the believed properties
of the icy moons and their oceans would allow polar heat transport enhancement. Therefore, our results may
help to improve the understanding of ocean currents and latitudinal variations in the oceanic heat transport and
crustal thickness on icy moons.

1. Introduction
In the common understanding, most icy satellites in the solar system, for example, the Jovian and Saturnian
moons Europa, Ganymede, Titan, and Enceladus, contain a global ocean layer beneath their ice crust (e.g.,
Nimmo & Pappalardo, 2016), which gained a lot of interest in terms of habitable environments (e.g., Chyba &
Hand, 2005; Vance et al., 2018). In order to assess their habitability, it is crucial to understand their flow dy-
namics. On Enceladus, for instance, eruptions from fault systems at the south pole (see, e.g., Nimmo & Pap-
palardo, 2016) suggest a strong polar anomaly of enhanced heat transport. Furthermore, the crustal thickness
counterintuitively decreases from the equator toward the poles (e.g., Beuthe et al., 2016; Čadek et al., 2019;
Hemingway &Mittal, 2019; Kang, 2022; Kang & Jansen, 2022), which suggests a large‐scale latitudinal variation
of the heat released from the subglacial ocean (Kihoulou et al., 2023). In this study, we investigate possible
dynamics inside and the heat transport out of such oceans by direct numerical simulations (DNSs) of rotating
Rayleigh‐Bénard convection (RRBC) in spherical geometry covering the full range from zero to rapid, nearly
subcritical rotation. Therewith, we aim to elucidate a possible factor for a polar enhancement of the heat transport
on icy moons.

The canonical RRBC system in planar configuration has been extensively studied experimentally and numerically
(see, e.g., the reviews by Ecke & Shishkina, 2023; Kunnen, 2021; Plumley & Julien, 2019; Stevens et al., 2013,
and Refs. therein). Its dynamical behavior is fully controlled by three dimensionless parameters: the Prandtl
number Pr describing the fluid properties, the Rayleigh number Ra setting the strength of thermal driving, and the
inverse Rossby number Ro− 1 as a measure for the importance of rotation relative to buoyancy (full definitions in
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Section 2). The influence of rotation can alternatively be parameterized by the Ekman number Ek = Ro
̅̅̅̅̅̅̅̅̅̅̅̅̅
Pr/Ra

√
.

Several flow regimes and flow states were discovered and studied over the past decades. The three major regimes
based on the trend of heat transport with varying rotation are (a) the buoyancy‐dominated regime at relatively slow
rotation, where heat transport and flow dynamics remain unaffected compared to the non‐rotating case, (b) the
transitional rotation‐affected regime, where intermediate rotation starts to alter the flow, and (c) the rotation‐
dominated regime for rapid rotation, where the heat transport steeply decreases with increasing rotation as it
impedes vertical motion (Proudman, 1916; Taylor, 1917), see for example, Kunnen (2021) and Ecke and
Shishkina (2023). Both rotation‐affected and rotation‐dominated regimes show a broad variety of subregimes or
flow states, all of which are characterized by columnar vortical structures aligned with the rotation axis (e.g.,
Aguirre Guzmán et al., 2020; Cheng et al., 2015; Julien et al., 1996; Julien, Rubio, et al., 2012; Sprague
et al., 2006; Stellmach et al., 2014; Stevens et al., 2009). Due to the huge variety of flow states, there exist various
estimates for the boundaries of the above regimes in the literature (see Kunnen (2021) for a detailed overview)—
most of them based on RRBC data in the planar configuration. The most common ones are summarized in
Figure 1.

An important peculiarity of planar RRBCwith Pr > 1 is that Ekman pumping through vertically coherent vortices
enhances the heat transport in the rotation‐affected regime to exceed its non‐rotating value (e.g., Kunnen
et al., 2006; Rossby, 1969; Stevens et al., 2013; Zhong et al., 2009). The enhancing effect is most efficient when
thermal and kinetic boundary layers have approximately the same thickness (e.g., Julien et al., 2016; Stevens
et al., 2010; Yang et al., 2020). This creates a heat transport maximum (per fixed Ra) that follows Ra ∝ Ek− 3/2

(Figure 1, red line; King et al., 2012; Yang et al., 2020). For very turbulent flows when Ra/Pr ≳ 108 (Hartmann
et al., 2023), the maximum diverges toward weaker rotation and the enhancement magnitude decreases (Yang
et al., 2020).

Parameter estimates for icy moon ocean worlds still vary over a wide range (Bire et al., 2022; Soderlund, 2019).
Based on the estimates by Soderlund (2019), the subglacial oceans of Europa, Ganymede, Titan, and Enceladus
would be situated in the rotation‐affected regime (see Figure 1). Given that the water of these oceans has Pr ∈ [10,
13] (Soderlund, 2019), they arguably have the potential for heat transport enhancement—at least around the poles,
where buoyancy is mostly aligned with the rotation axis as in planar RRBC. Such a polar heat transport
enhancement could strengthen the latitudinal heat transport variations that are observed in spherical RRBC with
Pr = 1 (e.g., Amit et al., 2020; Bire et al., 2022; Kvorka & Čadek, 2022; Soderlund, 2019). We therefore
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Figure 1. Regime diagram of (planar) rotating Rayleigh‐Bénard convection (RRBC) in the parameter space of (a) Ra and
Ek− 1 and (b) Ra and Ro− 1 (after Soderlund (2019), see also Kunnen (2021)): The solid gray line denotes the critical Rayleigh
number Rac for the onset of convection (Chandrasekhar, 1961). The solid red line depicts the transition between the rotation‐
dominated and the rotation‐affected regimes based on boundary layer crossing and heat transport maximum per fixed Ra for
Pr > 1 fluids (Yang et al., 2020). Dashed and dotted light red lines are alternative estimates for this transition by Ecke and
Niemela (2014) and Julien, Knobloch, et al. (2012), respectively. The dashed and dotted green lines represent the transition
between the rotation‐affected and the buoyancy‐dominated regimes based on Gastine et al. (2016) and for a cylinder with
diameter‐to‐height ratio 1 (Weiss et al., 2010), respectively. The blue circles mark the simulations of spherical RRBC in this
study (Pr = 4.38). The shaded areas show the predicted parameter range for several icy moons (10 ≤ Pr ≤ 13) as given in
Soderlund (2019). Line offsets symbolize the Pr dependence of any transition between Pr = 4.38 like in our simulations and
Pr = 13 like the upper bound for the icy moons.
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distinguish between two types of heat transport enhancement: (a) enhancement above the non‐rotating heat
transport in a specific region is considered as, for example, polar, equatorial, or global enhancement, whereas (b)
a larger heat transport at the poles than at the equator is referred to as latitudinal enhancement. Since most
simulations of spherical RRBC are conducted for Pr = 1 (e.g., Gastine et al., 2016; Soderlund et al., 2012; Wang
et al., 2021) and all studies on rotation‐induced heat transport enhancement focus on planar RRBC (e.g., Stevens
et al., 2009, 2010; Weiss et al., 2016; Yang et al., 2020), we aim to bridge this gap and elucidate the potential of
spherical RRBC to show polar and/or global heat transport enhancement. Therefore, we set Pr = 4.38 as in many
simulations and experiments of planar RRBC and cover the entire range of regimes (Figure 1).

In the following, we introduce spherical RRBC, its control parameters, and our numerical method (Section 2).
Then, latitudinal variations of the heat transport are analyzed and linked to the predominant structures in the flow
(Secton 3). Subsequently, we discuss the importance of Pr > 1 by a direct comparison with Pr ≤ 1 (Section 4), the
influence of the shell thickness, representing the ocean depth (Section 5), the sensitivity to different radial gravity
profiles (Section 6), and the relevance of the ratio between thermal and kinetic boundary layers for heat transport
enhancement in spherical RRBC (Section 7). The letter ends with conclusions (Section 8).

2. Dynamical Equations and Numerical Method
Spherical RRBC describes the dynamics of a fluid in a spherical shell confined by a hot inner and a cold outer
sphere, rotating around a polar axis (Figure 2b) (e.g., Aurnou et al., 2015; Busse, 1970, 1983; Roberts, 1968). The
geometry of the system is determined by the inner and outer radii ri and ro, defining the shell thicknessH= ro − ri
expressed by the radius ratio η= ri /ro. The dynamics are controlled by the three dimensionless parameters Pr, Ra,
and Ro− 1, defined as:

Pr =
ν
κ
, Ra =

αg0ΔTH3

νκ
, Ro− 1 =

2ΩH
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αg0ΔTH

√ . (1)

Therein, ν is the kinematic viscosity, κ the thermal diffusivity, α the isobaric thermal expansion coefficient, g0 the
reference gravitational acceleration at the outer sphere, ΔT the temperature difference between inner and outer
sphere, and Ω the angular rotation rate, respectively. Under Oberbeck‐Boussinesq approximation, the system is
governed by the continuity, Navier‐Stokes and temperature convection‐diffusion equations, which are given in
dimensionless form as:

∇ ⋅ u→= 0, (2)

du→

dt
= − ∇P +

̅̅̅̅̅̅
Pr
Ra

√

∇2u→ + Θ
g(r)
g0

e→r −
1
Ro

e→z × u→, (3)

dΘ
dt
=

1
̅̅̅̅̅̅̅̅̅̅̅̅
Pr Ra

√ ∇2Θ . (4)

Therein, u→, P, and Θ denote the normalized velocity, pressure, and temperature fields, respectively. d/dt denotes
the full, so‐called material derivative. g(r) = g0 (r/ ro)

γ accounts for radial variations in the gravity profile. The
equations are normalized by H and the free‐fall velocity U0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αg0ΔTH

√
. The temperature is normalized as

Θ = T− Ttop
ΔT ∈ [0,1]. The pressure field P is reduced by the hydrostatic balance and centrifugal contributions. We

consider Coriolis forcing from constant rotation around the polar axis, but neglect centrifugal contributions on
buoyancy. Isothermal and no‐slip boundary conditions are imposed at the hot inner (Θ = 1) and the cold outer
(Θ = 0) spheres.

In this study, we conduct DNSs of spherical RRBC at Ra = 106 with Pr = 4.38, 1 and 0.7 in the range of
0≤Ro− 1 ≤ 33. 3̄ (0 ≤ Ek− 1 ≲ 1.6 ⋅ 104) for different radius ratios η and gravity profiles g(r). For the chosen
parameters, the Reynolds numbers expectably remain relatively low (Re ≲ 270, see Tables S1–S3 in Supporting
Information S1). The DNSs solve the governing equations (Equations 2–4) by a central second‐order accurate
finite‐difference scheme based on a staggered grid discretization in spherical coordinates (Santelli et al., 2020),
which has been rigorously validated in subsequent studies (Wang et al., 2021, 2022). The computational grid is
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uniformly spaced in the longitudinal and latitudinal directions, while the grid points in the radial direction are
clustered toward the inner and outer spheres. This ensures an appropriate resolution of the Kolmogorov scales in
the bulk, as well as of the boundary layers (Shishkina et al., 2010). A summary of grid sizes and numerical
parameters can be found in Text S1, Tables S1–S3 of Supporting Information S1.

3. Polar Heat Transport Enhancement
We begin our investigation on a rather thick shell of η = 0.6 with constant gravity g(r) = g0. The dimensionless
heat transport is given by the Nusselt number Nu. We first consider Nu on the outer sphere as a function of the
latitude φ:

Nuro(|φ|) = −
1
η
∂r〈Θ〉t,ϑ,±φ

⃒
⃒
ro
. (5)

Therein 〈⋅〉t,ϑ,±φ indicates averaging in time, longitude, and latitudinal symmetry around the equator. For no and
slow rotation (Ro− 1 ≤ 0.3), the heat transport is expectably uniform over φ (Figure 2a). Accordingly, the flow is
dominated by radial buoyant plumes (Figure 2c), which can organize in a persistent large‐scale circulation
pattern. Such large‐scale circulations are well known from other non‐rotating geometries, for example, RBC in
cylindrical containers (e.g., Ahlers et al., 2009, and Refs. therein), 2D RBC (e.g., van der Poel et al., 2013, and
Refs. therein), or extremely wide domains (Stevens et al., 2018). However, without rotation, the heat transport
ideally is radially symmetric, defining a reference value Nu0 = 〈Nuro〉φ(Ro

− 1 = 0) (Figure 2a, horizontal dashed
line).

At intermediate rotation rates (1 ≤ Ro− 1 ≤ 5), the heat transport is reduced toward the equator and enhanced
toward the poles compared to the non‐rotating reference (Figure 2a). Taylor columns aligned with the rotation
axis form in the flow (Figure 2d) and alter the heat transport. Their vortical motion impedes the radial heat
transport around the equator and leads to the formation of sheet‐like thermal plumes around the columnar
structures (similar to Aurnou et al., 2015; Soderlund et al., 2012). On the contrary, the Taylor columns support the
radial heat transport around the poles by Ekman pumping through their interior (in presence of no‐slip boundary
conditions, e.g., Stellmach et al. (2014)). For η = 0.6, the polar tangent cylinder, that is, the cylinder around the
inner sphere aligned with the polar axis, intersects with the outer sphere at latitude |φtc| = 53.13°. We use |φtc| to
distinguish between the “polar region” (|φtc| < |φ| < 90°), in which ideal axial Taylor columns connect the hot
inner sphere with cold outer sphere, and the “low‐latitude region” (|φtc|> |φ|> 0°), in which axial Taylor columns
connect the Northern and Southern hemispheres of the outer sphere (Figure 2b). For 1 ≤ Ro− 1 ≤ 5, |φtc| clearly
correlates with the transition from reduced to enhanced heat transport (Nuro(

⃒
⃒φtc|) ≈ Nu0) . The rather smooth

trend of Nuro(|φ|) across |φtc| however suggests that the inclination between buoyancy (radial) and rotation (axial)
additionally influences the enhancement with latitude (as similarly argued by Gastine & Aurnou, 2023).

For rapid rotation (Ro− 1 ≥ 10), the latitudinal trend in the heat transport is inverted (Figure 2a). At high latitudes,
the heat transport quickly decreases with increasing Ro− 1 down to Nuro = 1. Toward the equator, the heat
transport first increases slightly (compared to the reduction at intermediate rotation), before it also decreases with
increasing Ro− 1. With increasing rotation the fluid motion is suppressed in the axial direction and becomes
strongly focused in the orthogonal planes (Proudman, 1916; Taylor, 1917, 1923). Thus, convection halts inside
the tangent cylinder and the radial heat transport mostly aligned with the rotation axis becomes purely conductive.
Toward the equator, quasi‐2D vortical motion aligns with radial buoyancy, which helps to longer sustain
convective heat transport via sheet‐like plumes (Figure 2e). Also for rapid rotation, |φtc| depicts a major transition
in the trend of Nuro(|φ|), namely where the heat transport starts to increase toward its equatorial peak value
(Figure 2a, see also Gastine & Aurnou, 2023; Wang et al., 2021).

Overall, Figure 2 shows that heat transport enhancement, as known from planar RRBC, is limited to high latitudes
inside the tangent cylinder in spherical RRBC. In order to further quantify the polar enhancement, we consider the
radial heat transport at the outer sphere averaged (a) over the polar region Nutc = 〈Nuro〉|φ|>|φtc|, (b) in the
complementary low‐latitude region Null = 〈Nuro〉|φ|<|φtc|, and (c) globally over the entire sphere 〈Nuro〉φ. In this
way, we can demonstrate that the heat transport in the polar region Nutc shows the typical enhancement behavior
of planar RRBC (Figure 3a, red triangles). Together with the results above (Figure 2), it becomes clear that the
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basic mechanisms, which cause the polar enhancement, remain the same, namely: the formation of axially
coherent vortical structures bridging the bulk between the hot and the cold source such that Ekman pumping of
relatively hot/cold fluid from the boundary layers can support the heat transport along the axial direction.
However, no enhancement is found for the global heat transport of the full Rayleigh‐Bénard sphere (Figure 3a,
gray circles). The enhanced heat transport inside the polar region is globally balanced by the reduced heat
transport in the low‐latitude region (Figure 3a, green squares). It seems that the equatorial reduction strengthens as
the polar enhancement increases.

The amplitude of polar heat transport enhancement compared to Nu0 reaches ≈28% (Figure 3a, red triangles),
which is comparable with the enhancement observed in planar RRBC (e.g., Kunnen et al., 2011; Yang et al., 2020;

Figure 2. (a) Dimensionless heat transport at the outer sphereNuro as function of the latitude |φ| for various rotation rates Ro
− 1 at Ra= 106 and Pr= 4.38 with η= 0.6 and

constant g(r) = g0. (b) Schematic view on spherical rotating Rayleigh‐Bénard convection showing the idealized arrangement of axially aligned Taylor columns inside
and outside the polar tangent cylinder. (c–e) Corresponding 3D snapshots of the temperature fluctuations Θ′ = Θ − 〈Θ〉ϑ,φ at no rotation (Ro

− 1 = 0), intermediate
rotation (Ro− 1 = 3. 3̄) , and rapid rotation (Ro− 1 = 15.9), respectively, viewed from the equator (top) and the South pole (bottom).
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Zhong et al., 2009). The polar enhancement is even larger when only a narrower region directly around the poles
is considered (see Figure S1 in Supporting Information S1), which emphasizes the additional influence of the tilt
between buoyancy and rotation. Despite the absence of a global heat transport enhancement (relative to Nu0 of the
non‐rotating system), the spatial large‐scale variations of the heat transport are more important in geo‐ and
astrophysical contexts, like the ocean dynamics of the icy moons. A direct comparison of Nutc/Null yields up to
≈50% larger heat transport in the polar region than in the low‐latitude region at the maximal polar enhancement
(Figure 3b, full circles). For strong rotation this ratio inverts as convection halts earlier in the tangent cylinder and
will again saturate at 1 once the system is fully in rest (Gastine & Aurnou, 2023).

4. Dependence on the Prandtl Number
Heat transport enhancement relative to Nu0 in planar RRBC essentially depends on Pr. No clear enhancement due
to rotation is observed for Pr < 1 as the thermal boundary layer is always thinner than the kinetic Ekman layer
(King & Aurnou, 2013; Stevens et al., 2010; Yang et al., 2020). To validate this Pr dependence, we conducted
additional series of DNSs for Pr = 1 and 0.7 (see Table S3 in Supporting Information S1). As expected, the heat
transport enhancement Nu/Nu0 inside the polar tangent cylinder of spherical RRBC vanishes (see Figure S2a in

Figure 3. (a, d) Heat transport Nu relative to the non‐rotating reference Nu0 as a function of Ro
− 1 for the full sphere (Nu ≡ 〈Nuro 〉φ) , in the polar region

(Nutc = 〈Nuro 〉|φ|>|φtc |) , and in the complementary low‐latitude region (Null = 〈Nuro 〉|φ|<|φtc |) . (b, e) Ratio between the heat transport in the polar region Nutc and the

low‐latitude region Null as a function of Ro
− 1. (c, f) Ratio of thermal and kinetic boundary layer thicknesses λΘ/λu as a function of Ro

− 1 averaged over the inner sphere, the
outer sphere, the polar region, and the low‐latitude region. (left) For different η with constant g(r) = g0, and (right) for different g(r) ∝ rγ with fixed η = 0.6. All data at
Pr = 4.38, Ra = 106. The solid, dashed, and dotted vertical lines mark the predicted optimal rotation rate Ro− 1opt in planar rotating Rayleigh‐Bénard convection (RRBC)
given by Ra = 24Ek− 3/2 (King et al., 2012; Yang et al., 2020), and the predicted onsets of convection in planar and spherical RRBC given by Rac = 8.7Ek

− 4/3

(Chandrasekhar, 1961) and Ra∗
c (η = 0.6)≈ 2.1Ek− 4/ 3 (estimated from Barik et al., 2023), respectively. The influence of Raeff on these transitions (shaded areas) are very

limited (see Sections 6 and 7). The dotted and dashed‐dotted horizontal lines emphasize ratio 1 and 0.8, respectively.
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Supporting Information S1). Interestingly, the heat transport in the low‐latitude region also decreases with smaller
Pr. Therefore, we can still observe some latitudinal enhancement Nutc/Null > 1 for Pr = 0.7 (see Figure S2b in
Supporting Information S1) without any polar enhancement Nu/Nu0 < 1. This agrees with the results from
Soderlund (2019) performed at Pr = 1. However, the latitudinal enhancement Nutc/Null is significantly smaller
than for Pr = 4.38. Based on this trend, we conclude that, the polar enhancement Nu/Nu0, which typically in-
tensifies with increasing Pr above unity, will additionally amplify the latitudinal enhancement Nutc/Null. Since Pr
also affects the heat transport in the low‐latitude region, we speculate that for Pr ≫ 1, even an enhancement of the
global heat transport Nu/Nu0 is possible. We note that these observations are opposite to the Pr trends observed
with free‐slip boundaries (Kvorka & Čadek, 2022).

5. Influence of Shell Thickness
In fact, the oceans of icy satellites are much thinner water layers, hence characterized by a much larger radius ratio
than the previous η = 0.6. For the popular icy satellites indicated in Figure 1, the estimates are in a range of
0.74 < η < 0.99 (Soderlund, 2019; Vance et al., 2018). A larger η also results in a larger polar tangent cylinder, in
which the axial columns connect inner and outer sphere. When we increase the radius ratio to η = 0.8, the tangent
cylinder starts already at φtc ≈ 36.87° (compared to φtc ≈ 53.13° for η = 0.6). Interestingly, the heat transport
enhancement in the polar tangent cylinder drops to only ≈9%, whereas the full sphere average remains unchanged
throughout the rotation‐affected regime (Figure 3a, open symbols). This confirms the trend observed in Bire
et al. (2022). Still, it seems counterintuitive since one would rather expect a constant enhancement amplitude in
the enlarged tangent cylinder, which also affects the global heat transport. We speculate that the increasing
inclination between radial buoyancy and axial rotation toward the edge of wider tangent cylinders reduces the
efficiency of vortices pumping heat in the axial direction. Further, the heat transport enhancement directly around
the poles reduces from Nupl/Nu0 ≈ 1.47 for η = 0.6 to Nupl/Nu0 ≈ 1.26 for η = 0.8 (see Figures S1 and S3 in
Supporting Information S1), presumably saturating at such a planar‐like enhancement amplitude for even larger η.
Regardless, the heat transport inside the tangent cylinder can still be significantly larger than at the equator,
resulting in a latitudinal enhancement up to≈25% for η= 0.8 (Figure 3b, open symbols). The optimal rotation rate
Ro− 1opt, at which the maximal enhancements are achieved, remains mostly unaffected.

In the rotation‐dominated regime, the heat transport in the polar region decreases similarly with Ro− 1 for both η.
Convection in the tangent cylinder ceases around Ro− 1c = 8.7− 3/4Pr1/2Ra1/4 ≈ 13.06 (Figure 3a, vertical dashed
line), derived from the predicted critical Rayleigh number Rac = 8.7 Ek− 4/3 in planar RRBC (Chan-
drasekhar, 1961). On the contrary, faster rotation is necessary to suppress convective heat transport in the low‐
latitude region for larger η. This reflects that the critical Rayleigh number Ra∗

c for the equatorial onset of con-
vection in spherical RRBC additionally depends on η, meaning Ra∗

c = f (η,…)Ek− 4/3 (see Al‐Shamali
et al., 2004; Barik et al., 2023; Dormy et al., 2004), in contrast to Rac in planar RRBC valid in the likewise
oriented tangent cylinder. We find a good agreement for the equatorial onset in our η = 0.6 data at
Ra∗

c (η = 0.6)≈ 2.1Ek− 4/3 (see Figure 3, Figure S1 in Supporting Information S1), estimated from the results
shown in Barik et al. (2023) for η ≈ 0.6 and Ek ≈ 10− 4 to 10− 5.

Lastly, we note the different slopes of the heat transport in the polar and the low‐latitude region in the rotation‐

dominated regime. They can be attributed to “steep scaling” Nu∝ (RaEk4/3)3 ∝Ro4 in the polar region where
Ekman pumping plays an active role (Gastine & Aurnou, 2023; Julien et al., 2016; King et al., 2012, 2013;

Plumley et al., 2016) and (the onset of) “diffusion‐free scaling” Nu∝ (RaEk4/3)3/2 ∝Ro2 in the low‐latitude
region (Gastine et al., 2016; Wang et al., 2021). More detailed evidence for this can be found in Text S2 and
Figure S4 of Supporting Information S1.

6. Sensitivity to Different Gravity Profiles
We further investigate the influence of different radial gravity profiles g(r) = g0 (r/ ro)

γ. Besides a constant
gravity (γ= 0), we apply a homogeneous self‐gravitating profile (γ= 1) and a mass‐centered profile (γ= − 2). For
this, we stick to η= 0.6, because the radial gravity variation is larger in thicker shells and so is its potential impact
on the heat transport. Aside from minor deviations, we cannot observe major differences in the normalized heat
transport Nu/Nu0 in the rotation‐affected regime (until the polar heat transport maximum), including the
amplitude of the polar and latitudinal enhancement maxima and their optimal rotation rate Ro− 1opt (Figures 3d and
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3e). One might spot a small shift in Ro− 1 with γ. Its trend likely arises from a change of the effective Rayleigh
number of the system Raeff = 〈Ra(r)〉r, when the gravity varies with r: Raeff(γ = 1) < Raeff(γ = 0) =
Ra < Raeff(γ = − 2) (see Text S3 in Supporting Information S1). Solely in the rotation‐dominant regime (beyond
the polar heat transport maximum), the heat transport remains considerably larger for smaller γ, hence increasing
Raeff. Thus, the relative heat transport enhancement Nu/Nu0 for Ro− 1 ≤Ro− 1opt is mostly unaffected by the gravity
profile g(r) = rγ, in contrast to the absolute values Nu (Gastine et al., 2015; Wang et al., 2022). Especially the
amplitude of the polar enhancement maximum Numax/Nu0 seems to be insensitive to g(r).

7. Relevance of the Boundary Layer Ratio
In planar RRBC, the heat transport maximum for Ra/Pr ≲ 108 is typically associated with an equal thickness
of the thermal and kinetic boundary layers λΘ and λu (Stevens et al., 2010), which theoretically scales as
λΘ/λu ∝ Ek3/2Ra (King et al., 2012) giving an estimate for the optimal rotation rate at relatively low Ra (Yang
et al., 2020):

Ro− 1opt ≈ 0.12 Pr1/2Ra1/6 or Ra ≈ 24 Ek− 3/2opt . (6)

The predicted Ro− 1opt nicely aligns with the heat transport maxima in the polar tangent cylinder independent of η
and g(r) (Figures 3a and 3d, solid vertical line). Taking Raeff into account yields Ro− 1opt,γ=1 ≈ 0.97Ro− 1opt,γ=0 and
Ro− 1opt,γ=− 2 ≈ 1.07Ro− 1opt,γ=0 (see Text S3 in Supporting Information S1). Both predicted and observed shifts of
Ro− 1opt with γ are mostly negligible.

We further verify the predicted boundary layer crossing by directly computing λΘ and λu from our DNSs as the
height of the first peak in the radial profiles of the laterally averaged root‐mean‐square temperature and lateral
velocity, respectively. Due to the asymmetry of cooling and heating in spherical RRBC, the boundary layer
thicknesses differ between inner and outer sphere (Gastine et al., 2015). Therefore, we consider λΘ and λu
separately averaged over (a) the inner and (b) the outer spheres. In addition to the spatial average over the full
spheres, we again distinguish between (c) the polar and (d) the low‐latitude regions on the outer sphere. Our data
confirm such a typical boundary layer crossing for all the regions (a)–(d) in the spherical geometry—independent
of η (Figure 3c). Furthermore, the polar heat transport maxima and the predicted Ro− 1opt perfectly match to an
observed boundary layer ratio of λΘ/λu ≈ 0.8 (dotted horizontal line), especially for the polar region (red symbols)
and the inner sphere (blue symbols). This fully agrees with the observations of Yang et al. (2020) in planar RRBC
based on the same boundary layer definitions. Only for the thinner η = 0.8 shell, the boundary layer ratio of the
low‐latitude region (and consequently also for the full outer sphere) lie slightly below the expected λΘ/λu ≈ 0.8.
We also relate this to the different flow orientation at the equator, where the inner and outer shells act more like a
sidewall for the axial vortex structures compared to the classical configuration in planar RRBC and the alike
tangent cylinder. It therefore is even more remarkable that the boundary layer ratio also matches for the low‐
latitude region in the other cases. For variations of g(r), the agreement with 0.8 is still very good (Figure 3f).
These findings strengthen the argumentation by Amit et al. (2020) and Bire et al. (2022) that the transition be-
tween “polar and equatorial cooling” follows Ra ∝ Ek3/2.

8. Conclusions
Our DNSs of spherical RRBC with Pr larger than unity (Pr = 4.38) confirm the main features of heat transport
enhancement, as known from planar RRBC, to similarly occur in the spherical geometry:

1. The three major regimes (buoyancy‐dominated, rotation‐affected, rotation‐dominated) for the heat transport
behavior of RRBC can be identified (Ecke & Shishkina, 2023; Kunnen, 2021).

2. Intermediate rotation enhances the heat transport up to ≈28% compared to the non‐rotating case inside the
polar tangent cylinder, where buoyancy is mostly aligned with the rotation axis and axially coherent vortices
(Taylor columns) connect the hot inner with the cold outer shell.

3. The maximal (polar) enhancement is determined by an equal thickness of the thermal and kinetic boundary
layers λΘ/λu ≈ 1. The associated optimal rotation rate Ro− 1opt ⇔Ek− 1opt can still be predicted via Ra ≈ 24 Ek− 3/2 as
in planar RRBC (King et al., 2012; Yang et al., 2020).
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We however find that the polar heat transport enhancement is accompanied by a reduced heat transport at low
latitudes outside the tangent cylinder, where buoyancy is mostly orthogonal to the rotation axis and the axially
coherent vortices can only connect both hemispheres of the cold outer shell. The equatorial reduction compen-
sates the polar enhancement on the global average on the one hand, which on the other hand results in an even
larger latitudinal enhancement of up to ≈50% between the polar and the low‐latitude region.

We further clarified that the relative heat transport enhancements Nu/Nu0 and Nutc/Null are mostly unaffected by
the radial gravity profile. Rather surprisingly, a thinner shell (η = 0.8), which comes along with a larger tangent
cylinder, shows less but still significant enhancement (≈9% forNu/Nu0 and≈25% for Nutc/Null). While we expect
the enhancement closely around the poles to converge for large η, the outer region of wide tangent cylinders will
likely show less or no enhancement due to the inclination between rotation and buoyancy, urging for a better
objective separation. This and the impression that the polar enhancement remains globally compensated by the
equatorial reduction call for consecutive studies toward larger η, and for larger Pr.

The existence of polar heat transport enhancement in spherical RRBC, which increases the latitudinal difference
between polar and equatorial heat transport, implies that accounting for Pr > 1 can be crucial for simulations of
icy satellite oceans. Heat transport enhancement on the one hand increases with larger Pr (e.g., Stevens
et al., 2010; Zhong et al., 2009) but on the other hand decreases with larger Ra (e.g., Yang et al., 2020). Hence, the
question on how much enhancement persists on icy satellites with Pr > 4.38 (10 ≲ Pr ≲ 13) and Ra ≫ 106

(1016 ≲ Ra ≲ 1024) needs to be addressed differently as DNS cannot reach these parameters. Similarly, the effects
of salinity (see e.g., Ashkenazy & Tziperman, 2021; Kang et al., 2022; Zeng & Jansen, 2021) on the enhancement
needs to be further clarified. However, our findings show, in line with evidences from previous studies (Amit
et al., 2020; Bire et al., 2022; Kvorka & Čadek, 2022; Soderlund, 2019), that in principle large‐Pr related heat
transport enhancement could serve as an explanation for latitudinal heat transport and associated ice thickness
variations on icy satellites.

Data Availability Statement
The data on which this article is based are openly available in Hartmann (2023).
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